随着人脸识别、语音识别和自动驾驶日益成为关注焦点,人工智能(AI)与社会、人类生活融合程度正在快速演进。
其实早在1956年,人工智能这个“术语”就被正式提出。但在有限且昂贵的计算能力、已有计算方法存在缺陷、缺乏数据量这些无法克服的基础性障碍面前,“模拟人类大脑”显得非常遥远。此后,一直到20世纪80年代初,随着一类名为“专家系统”的AI程序开始为全世界的公司所采用,人工智能才兴起了第二次热潮。各国开始投入大量资金,例如日本经济产业省雄心勃勃旨在打造“第五代计算机”的研究计划,目标是制造出能够与人对话、翻译语言、解释图像,并且能像人一样推理的机器。80年代后期,产业界对人工智能系统投入巨大但只产生有限的应用产生质疑,人工智能的泡沫逐渐破裂,投入大幅消减,人工智能再一次步入寒冬。
那么,人工智能到底将靠什么走向大众?笔者认为,视觉AI技术将是发展方向。
对人类而言,70%到80%的信息获取来自视觉。对人工智能来说,视觉AI也被视为目前最具应用价值的AI技术。它能够让机器具备“从识人知物到辨识万物”的能力,从而看懂、理解这个世界,帮助我们在生产和工作中,提升处理信息的效率。
简单来说,视觉AI就是研究如何让机器会“看”,即用摄影机和电脑代替人眼对图像进行特征提取和分析,并由此训练模型对新的图像数据进行检测、识别等任务,建立能够从图像或者多模态数据中获取“信息”的人工智能系统。
源于深度学习的突破,视觉AI的识别能力突飞猛进,2012年的两个轰动事件,更被视为视觉AI的发展拐点。当时,由多伦多大学Geoffrey Hinton领导的团队,在一项名为ImageNet的图像识别竞赛中,利用深度学习和GPU的强大计算能力,将错误率降低了10%,震惊学术界,因为之前这项错误率每年只会降低1%—2%。
同年,“谷歌大脑之父”吴恩达带领团队,利用10亿参数的神经网络,在没有任何先验知识的情况下,仅仅通过观看无标注的YouTube的视频,创造了一套猫脸识别系统——从海量照片里自动识别出猫脸。
视觉AI迅速成为人工智能领域最重量级的研究领域,源自于其在安防、医疗、无人驾驶等多个领域的应用前景。
例如,在安防领域,视觉AI技术可进行人群分析、逃犯追捕,可通过城市中成千上万条路的摄像头对目标人群进行锁定与筛查,并做到实时告警,助力安防效率的提升;在手机领域,AI可提供刷脸解锁、刷脸支付等更加安全和便捷的体验,还可自动为面部美颜省去后期修图的时间;在自动驾驶领域,AI技术可以通过摄像头获取的图像,对车体的周围环境进行识别和分析,辅助做出精准的路径规划。
放眼未来,更多的应用前景都将贴上视觉AI的标签。比如,人脸识别技术有望在更多的物联网终端设备上应用,让安全便捷的身份认证无处不在,提升生活体验;在AI+工业领域,工业机器人、物流机器人将更多替代传统劳动力;在AI+文化领域,基于AI的增强现实技术,可以将古代文物、古代场景生动复原得以假乱真;在AI+教育领域,利用视觉技术实现学生的注意力管理、跟踪学生的知识点掌握,实现真正的因材施教。
当然,AI掀起的新一轮产业浪潮不过短短几年,技术上需要持续不断的突破创新,行业需要不断的深耕和挖掘,大众也需要对其给予足够的耐心。
扫二维码用手机看
版权所有:山东盛世博威通信技术-9170金沙登录入口·最新下载App Store 鲁ICP备12005280号-3 网站建设:中企动力 济南